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55. Structure of Benzene. Part X I .  Introductory Consideration of the Spectral 
Properties of the Vibrations of Some Deuterated Benzenes. 

By C .  R. BAILEY, C. K. INGOLD, H. G. POOLE, and C. L. WILSON. 

The investigation, described in Parts I-X, of the vibrational spectra of benzene and hexadeuterobenzene 
having established the model of the benzene molecule in equilibrium configuration, as well as the frequencies 
of all its spectrally active fundamental vibrations, attention is now turned to the problem of the inactive 
fundamentals, with a view to  the eventual determination of the force field. In this paper the method of investig- 
ation is explained, and some of the more useful relevant results of the application of general spectroscopic theory 
are given. The main work consists in the measurement and identification of the spectrally active fundamental 
frequencies of certain partly deuterated benzenes by study of their Raman and infra-red spectra. Subsidiary 
parts of the investigation deal with the fluorescence spectra of some of the more symmetrical isotopically 
isomeric benzenes, and with those higher harmonics which appear in the Raman and infra-red spectra of all 
the benzenes studied, including benzene itself and hexadeuterobenzene. 

(A) Scope and Method. 
(1) Spectrally Active Vibrations and Equilibrium Configuration.-This work was started (Parts I-IX, J., 

1936, 912 et seq., 1210) with the object of elucidating, by spectroscopic methods, the equilibrium configuration 
of the benzene molecule, its vibrational modes and frequencies, and the system of forces within the molecule 
which maintains the configuration and controls the frequencies. 

The method was to study the frequencies, intensities, and any other observable spectral characteristics of 
as many vibrations as leave their record in the infra-red absorption spectrum, in the Raman spectrum, and in 
the vibrational structure of bands which compose the electronic band system of the near ultra-violet ; and to 
do this not only for ordinary benzene, but also for a number of the isotopically modified benzenes which are 
obtainable from ordinary benzene by the replacement of some or all of its hydrogen atoms by deuterium. 

There are several reasons for pursuing parallel studies with isotopically isomeric forms : all depend on the 
circumstance that, in replacing an element by its isotope, we alter no nuclear charges, nor therefore any elec- 
tronic eigenfunctions, so that the whole internal force system remains unchanged. One result of this is that 
the sole effect of an isotopic substitution on the vibration frequencies of a molecule arises from known changes 
in certain atomic masses. There are accordingly calculable relationships between the frequencies of correspond- 
ing fundamental vibrations of any pair of isotopically i,someric molecules. Such relationships are independent 
of the common, initially unknown force system, but they will depend both on the configuration assumed for 
the molecule in equilibrium and on the particular fundamental modes of vibration to which they apply. 
Accordingly, the experimental verification of a set of relationships for all the observed frequencies affords a 
means, not only of establishing the geometry of the equilibrium configuration, or “ model,” of the molecule, 
but also of identifying the frequencies observed in the spectra, i.e., of assigning them to the various vibrational 
modes of which the model is capable. 

The 
chief results were (a) the complete establishment of the plane, regular hexagonal model, and (b)  the correct 
assignment to the appropriate vibrations of the model of the eleven fundamental frequencies which record 
themselves either in the Raman spectrum or in the infra-red spectrum of benzene. 

(2) Spectrally Inactive Vibrations and Force Field.-The remaining part of the programme depended on 
effects of isotopic substitution, not on frequency alone, but also on spectroscopic intensity. The general 
principles underlying the calculation of effects on intensity were discussed and illustrated by Lord and Teller 
in Part X (J., 1937, 1728). Quantitatively these effects may be rather complicated; but for a symmetrical 
molecule there exist also qualitative effects which are easily predicted : the intensity of any vibration in any 
particular type of spectrum may be in principle zero, or in principle different from zero, depending on whether 
the quantity (an electric moment or polarisability), whose value, averaged over the whole molecular con- 
figuration, controls the intensity, vanishes or not as a result of being averaged over a symmetrical system. 
8 8  Selection rules ” may be formulated which express these symmetry-dependent properties, and tell us whether 
any particular mode of vibration will be ‘ I  forbidden ” or “ allowed ” in a given type of spectrum. 

In Parts I-IX the programme thus far outlined was carried out for the molecules C&, and C,D,. 
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Owing to the high symmetry of the benzene molecule a number of its fundamental vibrations leave no direct 

record of their frequencies in either the Raman or the infra-red spectrum. The same is true, of course, for 
hexadeuterobenzene, which is identical in symmetry with benzene. The determination for these two molecules 
of the “ forbidden ” frequencies, which became a main preoccupation after the ‘ I  allowed ” frequencies had 
been identified, was obviously desirable in order to complete our knowledge of the vibrations of benzene in 
these two isotopic forms. 

Vibrations, which are forbidden in a spectrum for reasons of 
symmetry, may become allowed and in principle observable if a t  least part of the symmetry is removed by 
dissymmetric substitution ; but then the vibrations appear with altered frequencies, which in general bear 
no simple relation to the original inactive frequencies. If, however, the substitution is an isotopic one, there 
exist, as has been mentioned, certain relationships between the altered active and original inactive frequencies. 
In general these relationships are not of themselves sufficient to enable the inactive frequencies to be calculated ; 
but they form the main part of the body of data needed for this purpose. The rest one must hope to secure 
from either or both of two supplementary investigations. The first of these depends on success in the inter- 
pretation of the vibrational structure of the electronic band systems of benzene, hexadeuterobenzene, and 
perhaps of partly deuterated benzenes. The second consists in a detailed study of the overtones and com- 
bination tones of these stibstances, special attention being paid to the active first overtones and binary combin- 
ation tones involving inxtive fundamentals. This was the scheme, and (except for a slight setback mentioned 
later) this is very much how the matter has worked out. 

There was yet another reason for studying the vibrational spectra of the partly deuterated benzenes, and 
a further application to be made of the principle that isotopic substitution does not change the force field, for 
one of the objects of the work is to provide material for the determination of the forces within the benzene 
molecule. Now it is true of benzene, as of all but very simple molecules, that the number of its fundamental 
frequencies is smaller than the number of its elastic constants, even of its harmonic elastic cosstants. There- 
fore even a complete knowledge of the fundamental frequencies of ordinary benzene does not provide sufficient 
data for the calculation of the force system. But the same force system occurs in all the deuterated benzenes, 
and heme their frequencies, when determined, are also available to augment the body of data. 

It was important, of course, not only to observe 
the frequencies of the partly deuterated benzenes, but also to identify the corresponding vibrations. Owing 
to the high symmetry of benzene and hexadeuterobenzene, the Raman and infra-red spectra of these molecules 
each contain relatively few fundamental frequencies : had it been otherwise we might not have been able to 
interpret the spectra. I f  we should a t  once proceed to a deuterated benzene so dissymmetrically substituted 
that all vibrations are spectroscopically “ allowed,” very complex spectra would be observed, the interpretation 
of which would present great difficulties. Therefore the method we have followed is to remove symmetry from 
the benzene molecule in graded steps by properly oriented substitution, thus allowing previously forbidden 
xibrations to appear a few at  a time. This procedure gives us the best chance of arriving eventually a t  a 
completely correct interpretation even of the most complex spectra, because at  each stage of complexity the 
added complication is limited, and a full understanding of the related simpler spectra is available to assist and 
control interpretation. As in the already published work on benzene and hexadeuterobenzene, considerable 
use has been made of the frequency shifts produced by isotopic substitution for the purpose of assigning fre- 
quencies to their proper vibrations ; and therefore when two isotopically isomeric benzenes exist, such as mono- 
and penta-deuterobenzene, which have identical symmetry and therefore the same active vibrations, both 
have been examined. These considerations determined the general scheme, which was to work in order through 
the list, given in Table I, of isotopically isomeric benzenes (cf. Part I, ZOG. cit. ; also Nature, 1937, 139, 880). 

The plan for doing this.was as follows. 

A further remark is necessary concerning our scheme. 

TABLE I. 
Benzenes Examined and their Symmetry Classification. 

Symmetry. Formulae. Some symmetry elements. 
6h C 6 H 6 ;  C6D6 3-Fold axis ; centre 

1 3 : 5-CGH3D3 3-Fold axis (no centre) 
1 : 4-C6H4D,; 1 : 2 : 4 5-CGHZDd Centre (no 3-fold axis) 

Dsh 

Dlh(= CZV) C6H,D; C6HD, (No centre; no 3-fold axis) 
D d =  V h )  

Each line in the table represents a symmetry class. In all the molecules the plane of the ring is a plane 
of symmetry. The numerical subscripts in the symmetry labels (col. 1) mean that the axis perpendicular to 
the ring-plane is a six-fold, three-fold, two-fold, and one-fold symmetry axis, and also that the ring-plane 
contains six, three, two, and one two-fold axes, in the four symmetry classes taken in order. Some other 
symmetry properties of the classes are explicitly given in the table. Clearly the four classes correspond t o  a 
progressive reduction of symmetry. 

The examinations of the Raman and infra-red 
spectra of the remaining five of the benzenes listed has since been carried out according to plan, except that 
the tenth and last spectrum of the series is missing. This is the infra-red spectrum of pentadeuterobenzene, 
on the study of which we were just about to embark in 1939 when the work was interrupted. It is probably 
our lack of acquaintance with this spectrum that is responsible for the circumstance that one of the inactive 

Parts I-X dealt with benzene and hexadeuterobenzene. 
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frequencies of benzene in the list we shall present is still lacking complete confirmation. These papers are 
therefore in the nature of an interim report, and are published as such (contrary to our original intention) in 
view of the importance of the inactive frequencies in connexion with the thermodynamic functions of benzene 
and its derivatives, the study of which is a t  present being actively pursued in other laboratories. 

Concerning the ultra-violet band spectra of benzene and its deutero-derivatives, we have revised our earlier 
somewhat tentative analysis of the fluorescence spectra of benzene and hexadeuterobenzene in the light of the 
important advances in the interpretation of electronic spectra which have been made by Sklar, Sponer, Teller, 
and others within the last few years. We have also photographed and similarly analysed the fluorescence 
spectrum of 1 : 3 : 5-trideuterobenzene. These spectra have given useful new information concerning the 
vibrations of the electronic ground states of these molecules, but not to the extent that was hoped. What 
was not clear when we commenced this work in 1936 is obvious now, namely, that these spectra are chiefly 
valuable for increasing our knowledge of the vibrational frequencies, not of the normal state of the molecule, 
but of the electronically excited state which, along with the normal state, is involved in the electron transition 
responsible for the band system. 

More important than these spectra as a source of supplementary information for the determination of the 
inactive frequencies has been the study of overtones and combination tones. A large number of these weaker 
frequencies have been measured in the various spectra, An interpretation of those which occur in the Raman 
and infra-red spectra of benzene and hexadeuterobenzene was attempted in 1936, but with only partial success. 
We now advance an interpretation of the spectra of these and the other benzenes which is so complete and 
consistent that we think it is likely to prove permanent. 

These will be referred 
to in their context, but i t  may be mentioned here that some important evidence concerning the inactive fre- 
quencies has emerged as a result of thermodynamic studies by Andrews, Lord, and, very recently, by Pitzer 
and Scott. The Raman spectra of partly deuterated benzenes have already been studied by Redlich and 
Stricks, and much more extensively by Langseth and Lord. However, it was necessary to go over the ground 
again since these workers overlooked some of the fundamental Raman frequencies, and wrongly identified 
some others-omissions and errors which frustrated an attempt by Andrews to reconcile the frequencies 
collectively with his own thermodynamic results. There are no previous measurements of the infra-red spectra 
of partly deuterated benzenes, except that some of our own measurements have been published in preliminary 
short notes to which references are given later. 

Valuable contributions to the subject have been made by other workers since 1936. 

(B) Symmetry and the Fundamental Vibrations. 
An application to the vibrations of the benzene molecule of the methods of symmetry theory as developed 

for the spectroscopic field by Brester and Placzek was outlined in Part VIII (Zoc. cit.). We here set forth the 
arguments in a somewhat broader manner, suitable to the intended range of applications. Our previous 
discussion was designed primarily to provide for an initial uncertainty with respect to the molecular model. 
This time we assume the plane, regular hexagonal model, but now we wish particularly to consider the effect 
of modifying its symmetry by substitution. 

(1) Symmetry of the Molecular Models.-It is necessary to recall the method of specifying symmetry. A 
molecular model, regarded as a system of atomic point-masses situated at  the equilibrium positions of the 
nuclei, possesses certain " elements " of symmetry, that is, operations of rotation round an axis, reflexion 
across a plane and inversion through a centre which convert the model into itself. A complete " group " of 
such elements possesses the fundamental group property that each of its elements is a product of two of its 
elements. These relations between the elements mean that only a limited number of them are independent. 
A set of elements so selected from the group that none of the set can be derived as products from others of the 
set, whilst all the remaining elements of the group can be expressed as products of members of the set, may 
be called a " specifying set."* Unlike a group of symmetry elements, which is a unique expression of the 
symmetry, a specifying set of elements can generally be chosen in alternative ways, any one of which is sufficient, 
though not more than sufficient, to define the whole group and therefore the symmetry. 

When a parent molecule is so substituted that part of its symmetry is destroyed, the resulting molecule will 
possess fewer elements, which will form a group . such a group is called a " sub-group " of the parent group. 
From the sub-group we can select, usually in more than one way, a specifying set of elements for the sub- 
stituted molecule. If all the elements of such a specifying set are included amongst the elements of a specifying 
set for the parent molecule, the former specifying set will be described as a " sub-set " of the latter. 

Rectangular co-ordinate axes, x ,  y ,  z, fixed in the molecules to be considered, are taken as shown in the 
diagrams below, in each of which either A represents protium and B deuterium, or vice versa. The Schonflies 
symbols for the different types of symmetry are indicated : Dsh denotes the parent group while Dab, V,, and 
C,, are its sub-groups. In  group Dsh the co-ordinate axes are axes of symmetry; and there are four other 
symmetry axes, which are obtained by rotation of x, y ,  by 5 2x13 about z ; these will be labelled x f , y f . 

In  Table I1 the symmetry elements of these groups are set out : I represents identity (the " operation " 

* A name seems wanted :,, " sub-group " and " ckss " already have other established meanings. Elements of 
Thev should not be called " essential elements " specifying set " were called specification elements " in Part VIII.  

(as has since been done), because in general alternative specifying sets exist, with the result that not all, possibly not 
even any, of the elements of a particular specifying set are " essential " to  the definition of the group. 
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Benzene. Trideuterobenzene. Dideu terobenzene. Monodeuterobenzene. 
Hexadeut erobenzene. Tetradeuterobenzene. Pentadeuterobenzene. 

Dsh. D3h- vh. C2". 

of doing nothing), J inversion through a centre of symmetry, C,j rotation by &2x/p around axisj, bj reflexion 
across a plane perpendicular to j ,  and S,j rotation by -J=22n/p around j (= x,  y, z)  with accompanying reflexion 
across the-perpendicular plane. Each operational symbol represents one operation, except Cpj and S,j, which, 
because of the two directions of rotation, comprise two operations, unless p = 2, when each denotes only one 

TABLE 11. 
Symmetry Elements of Groups Deb, Dsh, V,,, and CZV. 

(S,j = J ) .  

D6h (multiplicity 24). D3h (multiplicity 12). 

Element. Multy. Element. Multy: 
1 
1 
2 
2 

I = C,Y . C,Y 1 J 
CZZ 
c3z 

CZY 1 uy == J . C2Y 1 
c2z = c,= . C,Y 1 ox = J . C,X 1 
c,y+ = c,z . C2Y 2 uY* = J . C,Yk 2 
c p  = c,*. c3z. C,Y 2 ux. == J . C,z* 2 

1 uz == J . CZz 

cGz = czz . c3' 2 S,Z == J . C6z 
2 Sez = ' J .  C3' 

Vh (multiplicity 8) .  

Element. Multy. Element. Multy: 
1 
1 
1 
1 

I = C,Y . C,Y 1 J 
C,' 
c 2 y  
c,x = c,z . c a y  

1 
1 
1 

a, = .J . c,z 
uy = .J . C2Y 
ux = -1 . c,x 

Element. Multy. 
I = C,Y . C,Y 1 
c3z 2 
c z y  
C,Y* = c3z . C,Y 

1 
2 
1 
2 

2 

0 2  s,z = uz . c,z 
0, = uz. c,1J 1 

uz . c3z . C,Y ox* = 
Czv (multiplicity 4). 
7-- 

Element. Multy. 
I = C,Y . C,Y 
CZY 

1 
1 
1 
1 

0.2 
ax = ( I t .  c,y 

The table includes a series of inter-operational equations so chosen as to exhibit for each group a specifying 
set of operations. The first half of any group of operations consists of pure rotations, whilst the second half 
comprises the same rotations applied after an inversion or reflexion. The specifying set thus disclosed for 
D6h is c,., C,', C,Y, J .  It is possible from this, by the omission of CSz, to derive a specifying sub-set for V,; 
but i t  is impossible by any omission so to derive sub-sets which are specifying for DBh and CZV. However, 
since CZz . J = bz and Czz . crZ = J ,  we can replace J by bZ in the original set ; and likewise, since Czz . C,Y = C,. 
and CZZ . CZX = C,Y we can replace C,Y by C,x. These changes make i t  possible to derive specifying sub-sets for 
any sub-group. Specifying sets for D,,, Dab, V,, and CZV contain 4, 3, 3, and 2 elements respectively; three 
series of related sets and sub-sets are shown in Table 111. 

TABLE 111. 
Specifying Sets of Elements for the Groups D6h, D,,, vh, and CZU. 

Group. Set and sub-set I. Set and sub-sets 11. Set and sub-set 111. 
Dsh  C3't Cz', CzY, J c3z, C,', CZY, CSZ, CZZ, CZX, 0, 

-, CZZ, CZX, 0, 
D3h None C,", -9 c 2 y ,  0' None 

CZV None - -  I I c ,y ,  0.2 None 
-9 Czz, C,Y, J -, CZZ, CZY, 0, vh 

(2) Symmetry of the Vibrations.-The vibrations of a molecule consist, in harmonic approximation, of 
fundamental (or '' normal ") modes, characterised by their frequencies v, and their normal co-ordinates, 4,. 
The latter are independent linear combinations of the spatial co-ordinates of the nuclei, and therefore can be 
taken to represent internal degrees of freedom. They have the property, both in classical and in quantum 
mechanics, that the potential energy is the sum of square terms, each depending on only one normal co-ordinate : 

v = E k v q , 2  ( k ,  = 47r2VV2) 

It #follows, classically and quantally, that the vibrations are orthogonal, none calling forces into play that 
affect another. Classically, displacements in normal co-ordinates, qv, are sine functions of the time, having 
frequencies v,. Quantally, the same frequency characterises the radiation associated with allowed transitions 
among vibrational states whose vibrational wave functions are identical but for factors which are functions of 
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qv. Displacement in a normal co-ordinate may be represented geometrically by a set of vectors attached to 
the nuclei (“ vibration forms ”). 

The 
invariance of V under all the symmetry operations requires that each operation must convert each qv either 
(1) into q,, or (2) into -qv, or (3) into a different q,, or linear combination of qv’s, having the same value of k,, 
i.e., the same frequency. According to what happens, the vibration is said to be either (1) symmetric, or (2) anti- 
symmetric, or (3) degenerate, with respect to the operation. The last possibility arises in the trigonally sym- 
metrical groups Dsh and Dsh, which have a number of “ doubly degenerate ” normal vibrations, i .e.,  pairs of 
identical frequency. For in these groups any vibration diagram which has not trigonal symmetry ( C 3 9  can 
appear in three forms which are geometrically identical except for orientation ; and since there is one relation 
between the three, namely, that the sum of their displacements is zero, they can clearly be made from two 
independent qv’s of the same frequency. Vibrations are classified with reference to their behaviour in the whole 
group of operations belonging to the model, but the classes will, of course, be correctly given if we consider, 
not the whole group, but a specifying set of operations, because any such set determines the group. 

In Part VIII we classified the vibratipns of Dsh molecules by reference to specifying set I of Table 111, 
because of the spectroscopic importance of the centre of symmetry, J .  It is more convenient now to use 
set I1 and its sub-sets, which are specifying for all the types of symmetry with which we are now concerned. 
In later papers we shall require the sub-sets of set 111. 

In any symmetry group which does not contain the element C3z,  every vibration must be either symmetric 
or antisymmetric to each of the symmetry elements. In  tables which follow, symmetry and antisymmetry 
with respect to a symmetry element are respectively denoted by + and by - (meaning multiplication of the 
normal co-ordinate by + 1 and - 1).  In any symmetry group which contains C3z, the non-degenerate vibrations 
are symmetric to C3z, but may be either symmetric or antisymmetric to each of the other elements of the specifp- 
ing set. Degenerate vibrations behave in a special manner to C3z and C2Y, but are either symmetric or anti- 
symmetric towards C2z and towards oz. Their common behaviour towards C,Y may be simply expressed by so 
choosing the independent components of the degenerate pair that one is symmetric and the other antisymmetric 
to the symmetry operation : this result is denoted by the symbol f . The common effect of applying operation 
C3z to degenerate vibrations may be represented by choosing the components of the degenerate pair in the com- 
plex form expressing opposing rotations, which then suffer a simple change of phase. This result is designated 
cT (meaning multiplication of the complex normal co-ordinates by erani’J). 

By setting out all the possible combinations of these different types of behaviour, which vibrations may 
exhibit under the symmetry operations of a specifying set, we define the “ symmetry classes ” into which the 
vibrations may fall. For the groups with which we are concerned, these symmetry classes are labelled with 
symbols which indicate their symmetry properties according to the set of conventions listed in Table IV. 

Since V arises purely from internal forces, i t  must have the full symmetry of the molecular model. 

TABLE IV. 
Symmetry Class Symbols of Groups 

Group. Class symbol. 
f A  
B 
E +  = degen., sym. to  C 2 z  

= sym. to  C$, and to  C2* 
= sym. to  C,”, not to C,“ 

1.5- = degen., antisym. to C2z 

= sym. to  C38 
D3h = degenerate 

A = sym. to  CZt, and to  C2Y 
B ,  = sym. to  C,z, not to C,Y 
B, = sym. to C,Y, not to C2z 
B, = antisym. to C,Z, and to C2Y 
A = sym. to  C,Y 

C?Y { B  = antisym. to  C,V 

I 

D6h, vh* c2v* 

Class symbol. 
, = sym. to C,Y , = antisym. to C,Y 
= sym. to J 
= antisym. to  J 
= sym. to  C,Y 1 

? antisym. to  C,Y I 
- sym. to a, 

f’ - - antisym. to uz 

= sym. to J 
= antisym. to  J 

= sym. to  u, 
= antisym. to  0, I 

The first column of each of the Tables VII-X (pp. 227-228) contains the descriptive labels of the sym- 
metry classes. The next few columns in each table show in detail the symmetry properties of the various 
classes with respect to the symmetry elements of those specifying sets which have been chosen to represent the 
symmetry groups. 

The vibrations of any pair of symmetry classes of group Dsh, which are so chosen that their behaviour 
with respect to the operations of the specifying set differ only in relation to one or more symmetry elements 
which disappear in a sub-set, will retain no distinction of symmetry in the corresponding sub-group. Thus 
each symmetry class of each of the sub-groups Dsh, V,, and C,, may be regarded as compounded by the fusion 
of two or more classes of the group D6h. The Dsh classes which bear this relation to the classes of the groups 
Dsh, Vh, and CZv are shown next after the detailed symmetry properties of the classes in the tables relating 
to these sub-groups. Inasmuch as group Cpv is a sub-group of Dsh and also of vh, there is a similar fusion of 
the classes of these latter groups to form those of group &. The whole pattern of relationships between the 
symmetry classes of the different groups and sub-groups is shown in Table V. 
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TABLE V. 

Relations between Symmetry Classes of Group D,h and its Sub-groups. 

227 

D6h A,,, B1, Eg+, EU- Azg, B2, E +, Eu- A m ,  B Eu+, Eg- 

Cm 

vl3 A9 

E” 7 co E’ 9 -  E” 
L a -  

BZ 

B3U BlU Bw + -- 
w 

E’ - 
P 

P P 

7- - 
* + * 

Dsh 

P 

D6h AIgrEg+ B1,,EU- A1,,EUf B z -  Azg,E,+ B 3 u -  A2u,Eu+ Bzg,Eg 

(3) Distribution of Vibrations with Respect to Symmetry.-The number of vibrations which a molecule 
possesses in any symmetry class depends, not only on symmetry, but also on the numbers and types of the 
atoms involved. Placzek’s method of calculating the number commences by placing the molecular model in 
a potential hollow of its own symmetry, so that the translational and rotational degrees of freedom become 
included amongst the vibrations. The model is then divided into “ point-sets,” a point-set consisting of those 
mass-points which can be generated from one mass-point by the symmetry operations of the model. Thus 
1 : 3 : 6-trideuterobenzene has four point-sets, the 1 : 3 : 5-carbon atoms, the 2 : 4 : 6-carbon atoms, the protium 

TABLE VI. 
Proper Symmetries of Point-sets of Benzenes of Symmetries Dsh, D3h, v h ,  and Czu. 

(In the formulz either A = H and B = D or A = D and B = H.) 
Molecule. Point-set. Prop. syrn. Molecule. Point-set. Prop. sym. 

Bl Aa 

Bzu A ,  Bzu Bw 
A1 

h 

C6A6 { 1 : 2 :  3 :  4: 5 :  6-C czv 
J ,  l-c c 2 v  

2 : 4 : 6-C I ,  C6AB5 I, 

(D 6h) 1 : 2 :  3 ;  4: 5 :  6-A 
1 : 3 : 5 - c  ,> 1;:; I ,  

1 : 3 : 5-A ,, $ 5  

2 : 4 : 6-B (CZJ IB:: cs I ,  

9 ,  

,, 3 : 5-c  1 : 4-c  
1 : 4-A ,# 

2 :  3 :  5 :  6-C C S  

i C6A3BS 

(=3h) 

1 1  i 2 :  3 :  5 :  6-B 

C6AZB4 

( v h )  
3 )  

Proper sym. C,,:-Group : I, C2Y, a,, a,. 
Proper sym. C, :-Group : I, a,. 

Specifying set : Cay, 0,. 

Specifying set : 0,. 

atoms and the deuterium atoms. Any point-set has a “ proper symmetry,” which consists of all those oper- 
ations of the model which can be performed on a point of the set without generating any other point of the set. 
The operations of a proper symmetry form a group, and this, if not the group of the symmetry of the model 
itself, is always a sub-group of that group. Accordingly, a proper symmetry can be defined by a selection of 
symmetry elements constituting a specifying set, which, if not specifying for the model itself, can always be 
chosen as a sub-set of a set which is specifying for the model. Table VI shows the point-sets into which our 
benzene molecules may be divided, together with their proper symmetries, the groups of elements composing 
these symmetries, and convenient specifying sets. 

The general rule giving the number of vibrations contributed by a point-set to a symmetry class is that it 
is equal to the number of independent linear combinations of the spatial co-ordinates which show the behaviour 

TABLE VII. 
Normal Vibrations of Benzene Model Don. 

(Examples : C6H6, C,3D6.) 
Non-vanishing components of 

Specifying set of elements. Vibs. per r A \ 

r c 1 point- Trans. M (Infra-red a (Raman 
C,Z. C,*. C,Y. 0,. set C2v and rot. Vibs. activity). activity). + + + + 

+ f + & 

I 1 - 2 F F 
1 - 2 F F 

- 4 F axx = -ayy;  aq 
4- 

2 
- 2 F F 

+ 
1 -- 

- 3- Non-degenerate 10 Parallel 1 Pol. 2 + 2-Fold degenerate 10 Perpr. 3 Depol. 5 
- Degrees of freedom 30 I 

er (1 + 
\ - 

In  common: 0 + + 
Frequencies : 20. Active : 11. Inactive : 9. 
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of the class towards the elements of the proper symmetry of the point-set. Statements of the symmetry pro- 
perties of the co-ordinates, x, y, z, are included in Tables VII-X. The total number of vibrations in any 
symmetry class will be the sum of the numbers contributed by the point-sets; for these are not coupled to 
one another by symmetry, but only through the force field, which cannot affect the number of degrees of freedom 
having any given symmetry. 

TABLE VIII. 
Normal Vibrations of Benzene Model Dsh. 

Symmetry 
class. 

E” 

Y 9 
z 

Symmetry 
class. 

X 

z 
Y 

Symmetry 
class. 

A1 
A ,  
B l  
B ,  
X 

z 
Y 

(Example : 1 : 3 : 5-C,H,D3.) 
Non-vanishing components of 

Specifying set of elements. r 1 

r--~-, Component Trans. M (Infra-red a (Raman 
C,Z. C,Y. ah. Dsh classes. and rot. Vibs. activity). activity). + + + + + + 
&F & 
E F  f 

eT + 

4 F axx = a%ry: azz - 0 F F 
3 F F 
3 Mz F 

3 axz, ye 

- + A,,,  BlU 
AlU, B1g + 89 8 Rz 

2u* B ,  T ,  + E +, E,- Tx, Y 

+ Non-degenerate 10 Parallel 3 Pol. 4 

I 

- 
- - 

7 p,, a,= - ayy: axy 
- d+I Eg- %,y 

+ 2-Fold degenerate 10 Perpr. 7 Depol. 10 
- Degrees of freedom 30 5- - 

Frequencies : 20. Active : 17. Inactive : 3. 

TABLE IX. 
Normal Vibrations of Benzene Model Vh. 

(Examples : 1 : 4-C,H4D, ; 1 : 2 : 4 : B-C,H,D,.) 
Non-vanishing components of 

Specifying set of elements. Component r L \ 

7 -v  Trans. M (Infra-red a (Raman 
c,z. C‘p. classes. and rot. Vibs. activity). activity). 

- - + Non-degenerate 30 $-Parallel 3 Pol. 6 
Degenerate 0 $-Perpr. 10 Depol. 9 + - Degrees of freedom 30 I- __y____I_I 

+ + - 
- 

In  common : 0 Frequencies : 30. Active : 28. Inactive : 2. 

TABLE X. 
Normal Vibrations of Benzene Model CZb. 

(Examples : C,H,D, C,HD,.) 
Non-vanishing components of 

Specifying elements. 7 L > 
& Component Dsh Trans. and M (Infra-red a (Raman 

d. classes. rot. Vibs. activity). activity). 

- + Non-degenerate 30 #-Parallel 6 Pol. 11 + Degenerate 0 #-Perpr. 21 Depol. 19 
- Degrees of freedom 30 I J 

+ - * 
In  common: 27 Frequencies : 30. Active : * 30. Inactive : * 0. 

The numbers of vibrations calculated in this way include the so-called ‘‘ null vibrations,” i.e., those which 
become ordinary translations and rotations when the imposed external force-field is removed. From the 
symmetry properties of translations and rotations, the symmetry classes to which these degrees of freedom 
belong may easily be identified. They are indicated in Tables VII-X by the following notation : T j  represents 
a translation parallel to j ,  and Rj a rotation around an axis parallel to j ; Tjk denotes a translation, having two 
degrees of freedom, in the jk-plane, while Rjk similarly signifies a rotation with two degrees of freedom about 
axes in the jk-plane ( j ,  k = x, y, 2). The null vibrations being thus accounted for, the numbers of true vibrations 
in the symmetry classes follow by difference as shown in the tables. 

* Note.-Two of the three A ,  frequencies, which are allowed to be Raman active (axZ need not vanish) by their 
symmetry classification, can be shown to  be inactive (a2, vanishes) by more detailed considerations (cf. Part XX). 
The remaining one is active (axZ does not vanish). 
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(4) Spectral Activity of the Vibrations.-It is well known that intensity in the infra-red absorption spectrum 
is dependent on integrals (matrix elements) which measure the amplitude of the x-, y-, and z-components of the 
oscillating electric moment associated with the vibrational transition. The integrals are of the form 

where 4 and 4’ are the total vibrational wave-functions (wholly real) of the combining states, and Mj+ is the 
difference between the j-component of the electric moment of the molecule for a given nuclear configuration 
and the j-component of its electric moment in equilibrium configuration. For a non-linear n-atomic molecule, 
J ,  is the product of 3n - 6 wave functions, +v, of the form of the wave-function of the linear harmonic oscillator, 
each a function of only one argument, viz., the normal co-ordinate q, ; and correspondingly dq represents the 
product of the 3n - 6 differentials dq,. The conditions for the appearance in the infra-red spectrum of the 
fundamental frequency of vibration v is that a t  least one of the integrals M,, My ,  M z  shall not vanish when 
4 and 4’ differ only with respect to the single factors J,u and $211, which are functions of the same qv, and differ 
in quantum number by unity. It follows from the forms of the harmonic oscillator wave functions (Hermite 
polynomials multiplied into exponential functions) that dcu 4; is an odd function of qo, and that therefore the 
integrals will not vanish as a result of the integration by dq, only if Mj* changes sign with qu, that is, if Mj* has 
the same symmetry properties as qv. The symmetry properties of Mz*, My+, and M,* are those of the CO- 
ordinates X ,  Y ,  and z ; and these may be read in Tables VII-X, and directly compared with the properties of the 
normal co-ordinates of the various symmetry classes. The components of the transition moment, M ,  which 
do not vanish are indicated in the penultimate columns of the tables : the entry F means that all three com- 
ponents vanish, and that the vibrations of the symmetry class are forbidden in the infra-red. 

For the symmetrical-top benzene molecules of the Dab and Dsh groups, a useful distinction exists between 
the fundamental infra-red bands of vibrations for which the transition moment is parallel to z and those for 
which i t  has the x- or y-direction. The former, called “ parallel bands,” have a relatively broad rotational 
structure, because the two principal moments of inertia perpendicular to the transition moment are the two 
smaller ones. The latter, the “ perpendicular bands,” have a distinctly narrower structure, essentially because 
one of the two moments of inertia perpendicular to the transition moment is the large one. For instance, 
the separations of the intensity maxima of the P- and R-branches of the parallel bands of C,H6, C6H3D3, and 
C6D6 are about 25 cm.-l, whilst the corresponding separations for the better resolved perpendicular bands are 
closer to 16 cm.-l. Even in the asymmetrical-top molecules of the V ,  and C,, symmetry groups a similar 
qualitative distinction applies, because, although all three principal moments of inertia are now different, the 
one about the z-axis must still be equal to the sum of the other two, which, because of the small masses Of 
protiurn and deuterium compared to carbon, will not differ greatly from each other. Thus we can still distin- 
guish relatively broad “ pseudo-parallel ” bands (as we call them), whose transition moments are parallel to Z, 
from the narrower ‘‘ pseudo-perpendicular ” bands, the transition moments of which have the x- and y-direc- 
tions. These distinctions, which provide a check upon the assignment frequencies, are noted in the tables. 

Intensity in the Raman spectrum is dependent, according to Placzek’s theory, on matrix elements of the 
components of the oscillating polarisability which is associated with a vibrational transition : 

Here ajk* represents the difference between the jk-component of the polarisability of the molecule in a given 
nuclear configuration and the same component of its polarisability in equilibrium configuration ; 4, G’, and dq 
have the significance already mentioned. A transition in which one normal vibration changes its quantum 
number by unity may record its frequency in the Raman spectrum provided that a t  least one of the integrals 
azz, xyy, aZz, am, ayz, azz, does not vanish; and, as discussed above in connexion with the dipole moment 
integrals, any polarisability integral ajk. will not vanish only if ajk+ has the symmetry properties of the normal 
co-ordinate of the vibration. A polarisability component xjk* will suffer symmetry transformations which, 
since they are products of those undergone by the co-ordinates J’ and k, can be deduced by multiplying 
together the operators, listed in Tables VII-X, which express the behaviour of the two co-ordinates * ; the 
resulting symmetry properties can then be directly compared with those of the vibrations in the various S p -  
metry classes. Those components of the transition polarisability which do not vanish are indicated in the 
last columns of Tables VII-X, where, as before, the entry F means that all components vanish, and that the 
vibrations of the symmetry class are forbidden. 

The main experimental distinction betwken Raman frequencies relates to their state of polarisation. Placzek 
has shown that only vibrations which are symmetric with respect to all the elements of symmetry of the mole- 
cular model, the so-called “ totally-symmetrical ” vibrations, can give rise to Raman lines whose depolarisation 
factors may fall below the value of 6/7 ; such lines are described as “ allowed to be polarised,” or, more simply, 
as ‘‘ polarised,” although their depolarisation factors may lie anywhere between zero and the upper limit. 
All other vibrations which are active for the Raman spectrum produce so-called “ depolarised ” lines, for which 

* In  carrying out this multiplication of operators it should be noted that  the product (ET) ( E + )  has the two values 4- 
and E T ,  since two rotations by &22a/3 may produce rotation by 0 or ~ 2 ~ / 3 .  Similarly the product ( & I )  (&) has the three 
values +, -, and f. 
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the depolarisation factor is equal to 6/7. 
frequencies, are noted in the tables. 

These distinctions, which are of importance for the assignment of 

(C) Geometrical Forms of Normal Co-ordinates. 
(1) Benzenes of Dsh Symmetry.-As we pointed out in Part VIII, the vibration forms of benzenes of the 

Dsh symmetry group can be largely determined by simple geometrical reasoning based on the symmetry and 
orthogonality of the normal co-ordinates, without any prior knowledge of the frequencies or the force system. 

Orthogonality means that the work done by displacement in any one normal co-ordinate against the forces 
called into play by displacement in any other normal co-ordinate is zero ; or, in terms suitable to direct geo- 
metrical application, that the sum over all the mass-points in the molecule of the product of the mass of a 
point and the scalar product of its displacement vectors in two vibrations must vanishfor everypair of vibrations. 

We shall require for reference a more complete diagram of the vibration forms of the Dsh benzene model 
than was given in the earlier publication, in which only one component of each degenerate pair of normal 
modes was depicted. In  the figure we show vibration forms corresponding to the 30 internal degrees of freedom 
of benzene. The A vibrations, 
which have a 6-fold z-axis, are in the first row, and the B vibrations, with only a 3-fold z-axis, are in the second 
row. The next two rows contain the degenerate E+ vibrations, which have a 2-fold z-axis, and the last two the 
degenerate E- vibrations, for which the z-axis is only one-fold. The vertical dividing lines distinguish sym- 
metry from antisymmetry with respect to the 2-fold y-axis, and also with respect to the centre, or alternatively 
the xy-plane, of symmetry. The members 
of each pair of degenerate vibrations are connected by a brace. As is well known, the components of any 
degenerate pair of vibrations can be chosen in an infinite number of ways. We have in all cases chosen them 
so that one, labelled a, is symmetric with respect to the 2-fold y-axis ; the other, labelled b, then becomes fully 
determined by the orthogonality principle. 

When the carbon and hydrogen point-sets of the Dsh model each contribute only one vibration, or one 
degenerate pair of vibrations, to a symmetry class, one of the two vibrations or degenerate pairs that can be 
formed by combining the contributions must involve parallel displacements, and the other antiparallel displace- 
ments, of .corresponding carbon and hydrogen atoms : these are the only types of combination that are per- 
mitted by the orthogonality relationship and the symmetry restrictions of the class. In  some symmetry classes 
the combination vibrations are true vibrations ; in others one vibration or one degenerate pair is of the " null " 
type, and this leaves only one true vibration or degenerate pair in the symmetry class.* Thus in all classes 
which contain either one or two vibrations, or one or two degenerate pairs, the principles of orthogonality and 
symmetry completely determine the vibration forms. It is otherwise with the symmetry classes E,+ and Eu-, 
which respectively contain four and three degenerate pairs. For these, the diagrams given in the figure satisfy 
the orthogonality and symmetry conditions, but so also would any set of four degenerate pairs made by combin- 
ing orthogonallythe four Eg+ pairs, or any set of three formed similarlyfrom the E,- pairs. In order accurately 
to determine which are the right orthogonal sets we should require to know the force field ; but, as was shown 
in Part VIII , the vibration frequencies themselves provide some approximate guidance, and accordingly, that 
investigation has been utilised in trying to make the diagrams now given moderately true to reality. 

The descriptive labelling of the symmetry classes follows the conventions summarised in Table IV. Within 
the classes we distinguish by the additional label (C) , meaning " carbon-vibration," those vibrations in which, 
on account of the parallel coupling of the contributions of the carbon and hydrogen point-sets, each carbon 
atom carries its hydrogen atom with it, the CH-group moving practically as a unit; and likewise, by an 
additional label (H) , signifying " hydrogen-vibration,' ' those vibrations in which, on account of antiparallel 
coupling, the atoms of each CH-group vibrate with an approximately fixed centre of gravity, most of the motion 
being in the hydrogen atoms on account of their relative lightness.? Only in the Eg+ and E,- classes have we 
to introduce additionally a numerical label, 1 or 2, in order to provide completely specific symbols for the 
vibrations. 

(2) Benzenes of Lower Symmetry.-When some of the hydrogen atoms of ordinary benzene are replaced by 
deuterium with partial loss of molecular symmetry, the classes of the Dsh group coalesce in pairs or larger 
sets, as we have seen, to form smaller numbers of new symmetry classes. All of these contain more than two 
vibrations, or more than two degenerate pairs of vibrations ; and hence, except in a very few special cases, the 
vibration forms of the partly deuterated benzenes cannot be uniquely determined on the basis of symmetry 
considerations and the orthogonality principle only. Therefore, in our consideration of the vibrations of these 
benzenes, the vector diagrams of the figure .will be treated only as a starting point : from particular sets of these 
diagrams, new sets, more closely approximating to the true normal'modes, will have to be made by orthogonal 
linear combination; and this process will have to be guided by all the information which the spectroscopic 
observations provide-just as with the E,+ and E,- vibrations of ordinary benzene. This matter involves a 
good deal of detail, and is best discussed in association with the relevant experimental data. 

* Orthogonality to  null vibrations merely means that, in a true vibration, the molecule as a whole must possess 
neither linear nor angular momentum. 

t .The statement that  the carbon and hydrogen amplitudes in a CH-group are about equal in a C-vibration (parallel 
coupling), and that the hydrogen amplitude is much the greater in a H-vibration (antiparallel coupling) is generally true, 
but requires some modification in certain cases. 

They are exhibited in relation to the symmetry classes of the Dsh model. 

The totally symmetrical vibrations, A Igr are in the first rectangle. 

The matter is discussed in detail in Part XVII. 
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FIG. 1. 

Vibration forms of the Dsh benzene model. 

I 

1, i 
L - 7  c - 7  

+ 

I i:i= b 

6 

Xotes.-( 1) Vectors 9erpendicular to the plane of the ring represented + 0. 
I-r = Allowed in the infra-red spectrum (11 = parallel bands; I r  = perpendicular bands). 

( 2 )  For each point-set + : = + : i- = 0: o = 2 : 1. 
( 3 )  R = Allowed in  the Raman spectrum (p =polarised lines; d = depolarised lines). 



232 Bailey, Ingold, Poole, and Wilson : 

(D) Relations between Fundamental Frequencies. 
(1) The Product Theorem.-As has been mentioned, the problem of assigning observed frequencies to their 

proper vibrations is much assisted by the relationships between the frequencies of isotopically isomeric mole- 
cules, which are summarised in the product theorem of Teller and Redlich (Part VIII, loc. cit.) . Their formula 
is dependent on the assumption of a harmonic potential, but requires no further knowledge of the potential 
system. It refers to  the product IT of the frequencies v of vibrations of the same symmetry class, c, and shows. 
how to calculate the ratio of such products for two isotopically isomeric molecules, which are distinguished in 
the formula by dashes : 

(2) Application to Molecules of Like Symmetry.-We suppose first that the two molecules under comparison 
have the same symmetry. In  this case p enumerates the point-sets as defined above, m denotes the mass of an 
atom of a particular point-set, and n the number of its contributions to  the vibrations of class c as already 
defined. In forming the frequency products i t  is convenient to  introduce the common frequency of a degenerate 
pair of vibrations only once : consistently, in reckoning n a degenerate pair must be counted as a single contri- 
bution. Null vibrations must be included with true vibrations in calculating n, but for each of the t trans- 
lations so included, the formula provides a factor consisting of the ratio of the molecular masses M ,  and, for 
each of the included Y rotations, a factor which is the ratio of the relevant moments of inertia I .  Degenerate 
null vibrations are counted only once in reckoning t and r.  

TABLE XI. 
Theoretical (Harmonic) Values of the Frequency Product Ratio, 2, for Some Pairs of the Molecules 

(a) Greatest common symmetry D6h. 
C6H6, C,H,D, 1 : 4-CsH4D2, 1 : 3 : 5-C&&DaJ 1 : 2 : 4 5-CGHzD4, C6HD5, C ~ D I ~ .  

Symmetry C6H6 Symmetry - C6H6 Symmetry C 3 6 .  

A 1.414 BlU 1.414 E,+ 1-286 B 1.414 Eu+ 

E U  
A 2U 

class. C6D 6 class. C Z 6 ’  class. C 6 D 6  
-. 

1.998 
1.414 
1.286 
1.925 1.362 B: 1.414 Eg: 

A :; 
(b) Greatest common symmetry D3h. 

C 6 H 3 D 3  6h Dab C6H6 Cf3H3D3 -. -. 
classes. class. CBH,D,’ C6D 6 

D6h D3h C 6 H 6  

class. C,H,D3’ C6D6* 
classes. 

1.414 1.414 E f, Eu- E’ 1.960 1-962 
1.345 1.351 EZ+, E,- E” 1-345 1.351 
1.387 1.388 

(c)  Greatest common symmetry vh. 

6h vh C 6 H 6  C6H4D2 C6H2D4.  6h vh C 6 H 6  C13H4D? C6H2D+ 

chsses. class. Cm. C x ’  C6D6 classes. class. c,HID,’ c,H,D, C6D6 
1.000 1.285 1.000 
1.396 1.396 1.396 
1.324 1,032 1-329 

B3g 1.396 1.396 1.396 giZ: 2’ BSU 

A,,, E + Ag 1.414 1.414 B,,, E - B2, 
1.000 1.414 1.000 BlUl E:- B2u AlUI Egu’ A ,  

4 g s  E + B1g 1.367 1.370 1-372 
A,, ,  Eg,f BlU 1.396 0.988 1.396 

(d) Greatest common symmetry C2,,. 
c 2 v  C 6 H 6  C6H5D. C 6 H 5 D  C 6 H 3 D 3  -. C6H8D4. C6HD6. 

D6h classes. class. E D ’  C m ,  w3’ c{.Fg5 C6HD5- C6D6 
1-405 1.405 1.973 1-405 1-405 
1.381 1.382 1.909 1-914 1.383 1.385 

B 2 g ,  E u f J  Eg- B2 1-358 1.361 1.374 1.376 1.361 1.363 

A,,, BlU, E +I Eu- A1 
Bl  ; 2g, B ~ ~ ,  E ~ + ,  E ~ -  

121, Bl,, 4+, Eg- Aa 1.000 1.000 1.345 1.351 1-000 1.000 

(3) Application to Molecules of Unlike Symmetry.-When the molecules under comparison have different 
symmetries it is necessary to alter, for one or both of them, the previously defined concepts of point-sets, 
symmetry classes, and the degrees of freedom contributed by the former to the latter. A special case arises in 
which the symmetry of one molecule is a sub-group of that of the other, as with 1 : 3 : 5-C6H,D, and &€I6. 
All that is then necessary is a preliminary degradation of the symmetry of the more symmetrical molecuie to 
that of the less symmetrical molecule, by the placing on certain mass-points of imaginary distinguishing marks, 
which are supposed not to  alter the masses or any other dynamical characteristics. For instance, we might 
thus mark similarly the 1-, 3-, and 5-hydrogen atoms of benzene : then, instead of getting two point-sets and 
twelve symmetry classes (two without vibrations), we should have four point-sets and six symmetry classes 
(one without vibrations), just as with the trideutero-compound. The contributions n of the new point-sets p 
to the new symmetry classes c must be calculated on this basis. The way is then clear for an application of 
the formula, which will provide a product-ratio T for each symmetry class of the less symmetrical molecule, 
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that is, for each of the sets of classes of the more symmetrical molecule that coalesce to form a single class in 
the less symmetrical. 

In  the more general case, in which the symmetry of one molecule is not a sub-group of that of the other, it is 
necessary to find the sub-group which comprises all the symmetry elements that are common to the two mole- 
cules. Then the symmetry of each molecule must be reduced to that of this most symmetrical common 
sub-group by the imaginary labelling process described above. The numbers of point-sets will thus be increased 
and the numbers of symmetry classes reduced; but these are the point-sets and symmetry classes for which 
the contributed degrees of freedom must be calculated before applying the product formula ; and i t  is over these 
classes that the products of frequencies must be taken. A comparison of the molecules 1 : 3 : 5-C,H3D, and 
1 : 4-CbH,D2 would provide a case for this procedure. Their symmetries are D,h and Vh respectively, of which 
the most symmetrical common sub-group is C2v. The last has four symmetry classes, and i t  is for each of these, 
or in other words, for those sets of classes of the Dsh and Vh symmetry groups which coalesce to form each of 
them, that the formula provides a product ratio. 

(4) The Product Ratios.-Table XI gives the theoretical (harmonic) ratios of frequency products for a 
number of pairs of the isotopically isomeric benzene molecules with which we shall be concerned. The only 
numerical data used are the isotopic weights, H = 1.008, D = 2-014, C = 12.00, and the inter-nuclear distances, 
C-C = 1.39 A., C-H = 1.08 A. 

( 5 )  Anharmonicity.-The general effect of anharmonicity is to reduce frequency, and to do so more strongly 
the greater the vibrational amplitude ; amplitudes will on the whole be greater in the lighter of two isotopically 
isomeric molecules. Since in forming each product ratio we have chosen to put the frequencies of the lighter 
molecule in the numerator, the ratios are for the most part greater than unity. Thus the general effect of 
anharmonicity should be to reduce the ratios, as was originally pointed out by Teller. This prediction is borne 
out by our experience. 

The deviations are not quite regular, but the percentage deviation shows a marked tendency to increase as 
the product ratios themselves increase. When using product ratios for the purpose of calculating unknown 
frequencies from known frequencies we have found it useful to adopt the definite scale, given below, of correc- 
tions for anharmonicity. Although in any individual case some uncertainty as to the exactly appropriate 
correction must remain, the adopted corrections are derived from a consideration of all the deviations which 
are definitely established by known frequencies. 

Harmonic T ................................. -1.00 -1.28 -1-33 -1.39 -1.9 

The list is not exhaustive, but it includes the more useful ratios, 

Negative percentage corr. ............ 0.0 0-25 0.6 1.0 2.0 

(E) Spectral Activity of Overtones and Combination Tones, 
The study of overtones and combination tones forms an important part of the work to be described ; and, 

since molecules of several different symmetries are now under consideration, we shall require, as basis, a more 
general consideration of the optical behaviour of these subsidiary frequencies than that which was given in 
Part VIII. 

On account of the steep general decrease in the intensity of active harmonics of successive orders, i t  will 
suffice here to confine attention to first overtones and binary summation and difference tones. In the infra-red 
spectrum, and also in the Raman spectrum (since we observe only Stokes Raman lines), overtones and summation 
tones arise mainly from molecules which are originally in the vibrational ground state. Difference tones, on 
the other hand, originate in the relatively few molecules which, before interaction with the light, were thermally 
excited with respect to that vibration whose frequency occurs with negative sign in the combination frequency. 
Difference tones are therefore subject to a further factor tending to diminish their intensity, namely, the 
Roltzmann factor, exp( - hv,/lcT), of the initial, vibrationally excited state. 

By an argument similar to that given on p. 229, i t  follows that the spectral activity of first overtones will 
be dependent on the symmetry properties of a product +v+’v, in which the quantum numbers of Ov and +lV differ 
by two. Since the +’s are harmonic oscillator functions of qv, their product will have the symmetry properties 
of qv2. Similarly, the optical behaviour of a summation or difference tone will depend on the symmetry pro- 
perties of a product +v+’v+zr+’v, in which the quantum numbers of +v and $‘v, and of and (J’~., each differ by 
.one. Thus an overtone or combination tone may appear 
in the infra-red spectrum if a t  least one Mj,  and in the Raman spectrum if a t  least one mjk, has the symmetry 
properties of qv2 or of qv qv,, as the case may be. The symmetry properties of the squares and products of the 
qv’s can be deduced by multiplying together the operators, given in Tables VII-X, which express the behaviour 
of the qv’s towards the symmetry elements which are specifying for the model. The result of each such set of 
multiplications will be a set of operators characteristic of one * of the symmetry classes of the model : this 
is evidently the symmetry class to which the overtone or combination tone can be considered to belong. The 
same tables show which, if any, of the Mj,  or of the ocjk, have corresponding symmetry properties ; they show, 
therefore, the types of spectroscopic activity which are allowed for the overtone or combination tone. 

Although all the results we shall require concerning the spectroscopic activity of overtones and combination 

* For the reasons given in the footnote to p. 229, the multiplication of sets of operators belonging to two classes which 
are both degenerate leads t o  three sets of products, two corresponding to non-degenerate symmetry classes and the third 
to a degenerate symmetry class. 

This product has the symmetry properties of qvqD.. 

In  every other case we obtain only one set of product operators, as stated in the text. 
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TABLE XII. 

Symmetry and Activity of Overtones and Cornbination Tones of Benzene Model DBh (C6H6, C6D6). 
Raman-active [ 1. Infra-red active { ). 

Alg- A,. 442,. Biu. B2gm B2u. Eg+. E,+. Eg-. Eu-. 

A 1' 

A,' 

A," 

E" { 

[Eg-I 

A 1u 

{A 2u1 

E,+ 

[A 1gI 

A AZf .  A2". E'. E". 

TABLE XIII. 
Overtones and Combination Tones of Model D,,, 
(1 : 3 : 6;-C6H3D3). Raman  [ 1. Infru-red { >. 

\ 
TABLE XIV. 

Symmetry and Activity of Overtones and Combination Tones of Benzene Model Vh  (1 : 4-C6H,D,, 
1 : 2 : 4 : 6;-C6H,D,). Raman  [ 1. Infra-red { >. 

A,. A,. B lg. Blue B2g. B2w B3g- B S U .  

A1 

A2 

Bl  

B2 

A 1' A 2' B 1. B2. 

TABLE X V .  
Overtones and Cornbination Tones of Model C,, 
(C,H,D, C6HD,). Raman  [ 3 . Infra-red { }. 
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tones can be thus very easily deduced from Tables VII-X, it is in practice a necessity'to have the results in a 
more immediately available form ; and on this account Tables XII-XV are given, which contain within the 
frames the symmetry classes of the overtones and combination tones whose frequencies in harmonic approxim- 
ation are the sums or differences of those of fundamental vibrations of the symmetry classes shown around the 
sides of the frames. Raman activity and infra-red activity are indicated for the combination classes by 
brackets and braces respectively. No special indication is given concerning polarisation in the Raman spectrum, 
or band structure in the infra-red, since, owing to the generally low intensity of overtones and combination 
tones these spectroscopic characters cannot often be investigated. 
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